人生倒计时
- 今日已经过去小时
- 这周已经过去天
- 本月已经过去天
- 今年已经过去个月
谁知道毕达哥拉斯定理?
若一直角形的两股为a,b斜边为c,则有a2+b2=c2。我们都很熟悉这个性质,人们相信是毕达格拉斯〈约公元前560年~公元前480发现的),因此把它叫做毕氏定理。
毕达格拉斯曾提一组勾股数的正数数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。不是方程式a2+b2=c2的所有解,全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(mn)是互质且一奇一偶的任意正整数。
毕达哥拉斯定理是怎样的?
毕达哥拉斯定理指的是勾股定理。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
意义
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
扩展资料
爱因斯坦证明法:
作为证明前的准备,先从C点向AB画垂线CP。
在△ABC中,
∠CAP+∠CBP=90°……①
在△ACP中,
∠CAP+∠PCA=90°……②
①-②得到,
∠CBP-∠PCA=0
∠CBP=∠PCA……③
接下来是△ABC和△CBP,根据上述方法可以得出,
∠CAP=∠PCB……④
通过③、④得到2角相等,所以,
△ABC∽△ACP
△ABC∽△CBP
由于对应边的比是相等的,所以根据△ABC∽△ACP可以得出,
⑤+⑥得到,
这样就证明了勾股定理。
参考资料来源:百度百科-勾股定理
什么是毕达哥拉斯三元组数? 求详解毕达哥拉斯三元数组!
毕达哥拉斯三元数组又称毕达哥拉斯数或商高数.它是数形结合的一个典型例子.毕达哥拉斯学派研究出了一个公式:若m是奇整数,则m,(m^2-1)/2及(m^2+1)/2便是三元数组,它们分别表示一个直角三角形的两条直角边和斜边.如今我们把能形成直角三角形三条边的三个整数所构成的任何集合统称为毕达哥拉斯三元数组
毕达哥拉斯定理是什么?
毕达哥拉斯定理一般指勾股定理。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
扩展资料:
勾股定理的意义:
1、勾股定理的证明是论证几何的发端;
2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;
5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值。
这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
参考资料来源:百度百科——毕达哥拉斯定理
勾股定理公式?
一。勾股定理
如果直角三角形的两条直角边长分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.
指出:
(1)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,即勾2+股2=弦2.
(2)勾股定理反映了直角三角形三边之间的数量关系,因此是直角三角形的性质定理,它为我们利用计算的方法研究几何图形的性质提供了新的途径.
(3)勾股定理的证明常用面积法证明,读者可根据图的几种拼图方式,用面积证明勾股定理.
(4)勾股定理只适用于直角三角形,对于一般非直角三角形就不存在这种关系.勾股定理的作用是:①已知直角三角形的两边求第三边;②在直角三角形中,已知其中的一边,求另两边的关系;③用于证明平方关系;④利用勾股定理,作出长为的线段.
二、重点、难点、疑点突破
1、勾股定理
勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴涵着丰富的文化价值.勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理”.
勾股定理反映了直角三角形(三边分别为a,b,c,其中c为斜边)的三边关系,即c2=a2+b2.
它的变形为c2-a2=b2或c2-b2=a2.
运用它可以由直角三角形中的两条边长求第三边.
例如:已知一个直角三角形两边长分别为3cm,4cm,求第三边长.
因为该题设没有说明哪条边是直角三角形的斜边,所以要进行分类讨论.
当两直角边分别为3cm,4cm时,由勾股定理有斜边为=5cm;
当斜边为4cm,一直角边为3cm时,则另一直角边为.
故第三边为5cm或(根号)7cm.